Doomsday machine implications
This page describes the organizational forces that limit change.  It explains how to overcome them when necessary. 

Power& tradition holding back progress
This page uses an example to illustrate how:
  • A business can gain focus from targeting key customers,
  • Business planning activities performed by the whole organization can build awareness, empowerment and coherence. 
  • A program approach can ensure strategic alignment. 
Be responsive to market dynamics
This page uses the example of HP's printer organization freeing itself from its organizational constraints to sell a printer targeted at the IBM pc user. 
The constraints are described. 
The techniques to overcome them are implied. 
Overcome reactionaries
Primary Navigation

Doomsday machine implications

This page reviews the implications of doomsday machines in a complex adaptive system (
This page introduces the complex adaptive system (CAS) theory frame.  The theory provides an organizing framework that is used by 'life.'  It can illuminate and clarify complex situations and be applied flexibly.  It can be used to evaluate and rank models that claim to describe our perceived reality.  It catalogs the laws and strategies which underpin the operation of systems that are based on the interaction of emergent agents.  It highlights the constraints that shape CAS and so predicts their form.  A proposal that does not conform is wrong. 

John Holland's framework for representing complexity is outlined.  Links to other key aspects of CAS theory discussed at the site are presented. 
).  The mechanism and its
This page discusses the mechanisms and effects of emergence underpinning any complex adaptive system (CAS).  Physical forces and constraints follow the rules of complexity.  They generate phenomena and support the indirect emergence of epiphenomena.  Flows of epiphenomena interact in events which support the emergence of equilibrium and autonomous entities.  Autonomous entities enable evolution to operate broadening the adjacent possible.  Key research is reviewed. 
are discussed. 
Plans are interpreted and implemented by agents.  This page discusses the properties of agents in a complex adaptive system (CAS). 
It then presents examples of agents in different CAS.  The examples include a computer program where modeling and actions are performed by software agents.  These software agents are aggregates. 
The participation of agents in flows is introduced and some implications of this are outlined. 
cooperate and compete with each other repeatedly.   That situation enables the leverage of the doomsday machine architecture integrates a:
  • Signal that advertises the presence of the doomsday machine
  • Machine that once started can't be stopped.  
  • Uncontrollable initiation of the machine based on some constraint. 
  • Catastrophic result for all parties once the machine is started.  There is the potential for both parties to participate in an arms race. 

Effectively signalled, is an emergent capability which is used by cooperating agents to support coordination & rival agents to support control and dominance.  In eukaryotic cells signalling is used extensively.  A signal interacts with the exposed region of a receptor molecule inducing it to change shape to an activated form.  Chains of enzymes interact with the activated receptor relaying, amplifying and responding to the signal to change the state of the cell.  Many of the signalling pathways pass through the nuclear membrane and interact with the DNA to change its state.  Enzymes sensitive to the changes induced in the DNA then start to operate generating actions including sending further signals.  Cell signalling is reviewed by Helmreich.  Signalling is a fundamental aspect of CAS theory and is discussed from the abstract CAS perspective in signals and sensors.  In AWF the eukaryotic signalling architecture has been abstracted in a codelet based implementation.  To be credible signals must be hard to fake.  To be effective they must be easily detected by the target recipient.  To be efficient they are low cost to produce and destroy. 
Barriers are particular types of constraints on flows.  They can enforce separation of a network of agents allowing evolution to build diversity.  Examples of different types of barriers: physical barriers, chemical molecules can form membranes, probability based, cell membranes can include controllable channels, eukaryotes leverage membranes, symbiosis, human emotions, chess, business; and their effects are described. 
strategic constraints
provide a significant benefit in negotiations during such repetitive coopetition scenarios. 

This page reviews the implications of selection, variation and heredity in a complex adaptive system (CAS).  The mechanism and its emergence are discussed. 
has captured successful doomsday machine strategies
  Market Centric Workshops
The Physics - Politics, Economics & Evolutionary Psychology
Politics, Economics & Evolutionary Psychology

Business Physics
Nature and nurture drive the business eco-system
Human nature
Emerging structure and dynamic forces of adaptation

integrating quality appropriate for each market
This page looks at schematic structures and their uses.  It discusses a number of examples:
  • Schematic ideas are recombined in creativity. 
  • Similarly designers take ideas and rules about materials and components and combine them. 
  • Schematic Recipes help to standardize operations. 
  • Modular components are combined into strategies for use in business plans and business models. 

As a working example it presents part of the contents and schematic details from the Adaptive Web Framework (AWF)'s operational plan. 

Finally it includes a section presenting our formal representation of schematic goals. 
Each goal has a series of associated complex adaptive system (CAS) strategy strings. 
These goals plus strings are detailed for various chess and business examples. 
| Design |
This page uses an example to illustrate how:
  • A business can gain focus from targeting key customers,
  • Business planning activities performed by the whole organization can build awareness, empowerment and coherence. 
  • A program approach can ensure strategic alignment. 
Program Management
| Home

Profiles | Papers | Glossary | E-mail us